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Abstract   To understand the dynamic process of polymer detachment, it is necessary to determine the mean detachment time of a single break-

able link,  which is modeled as a spring. Normally,  this time can be viewed as the escape of a Brownian particle from the potential  well  of the

spring. However, as the free dangling length of the polymer chain increases, the conformational entropy of the chain is affected by geometric

confinement. It means that the wall exerts a repulsive force on the chain, resulting in accelerated link detachment from a macroscopic perspec-

tive. In this work, we investigate the effect of entropy on the detachment rate in the case where the substrate is spherical. We demonstrate that

spherical confinement accelerates chain detachment both inside and outside the sphere. An analytical expression for the mean detachment time

of breakable links is given, which includes an additional pre-factor that is related to the partition function. Additionally, we analyze the expres-

sions for entropic forces inside the sphere, outside the sphere, and on a flat wall, comparing their magnitudes to explain the difference in mean

detachment time.
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INTRODUCTION

Polymer detachment from surface adsorption is a common phe-
nomenon in biological systems and is essential for maintaining
the  activities  of  life.[1−7] Examples  of  this  include  bundles  of  F-
actin,  which  are  cross-linked  with  various  types  of  sticky
molecules,[3] and  biopolymers  that  are  attached  to  the  mem-
brane  of  cells  or  vesicles.[8−10] Single  molecule  manipulation
techniques  have  facilitated  the  study  of  detachment  of  long
macromolecules from substrates of  different types.  Experimen-
tal  results  obtained  through  these  techniques  provide  fine-
grained  details  of  the  detachment  process  at  the  microscopic
level,[11−13] such as  the  critical  force  required for  breaking base
pairs  during  DNA  separation[14,15] and  the  detachment  rate  of
polymer  chains  from  the  surface.[16−18] In  order  to  fully  under-
stand  these  biophysical  phenomena  or  quantify  the  results  of
experiments, it is often necessary to conduct theoretical investi-
gations  of  the  process  of  polymer  detachment  from  the  sub-
strate.  Such investigations  can provide crucial  insights  into the
underlying  mechanisms  of  detachment  and  help  researchers
develop predictive models for experimental outcomes.

Typically,  the  binding  potential  in  polymer  detachment
studies  is  realized  through  explicitly  discrete  breakable

links,[19,20] where the binding energy of each link ranges from
approximately one kBT (hydrogen bonds) to tens of kBT (cova-
lent  bonds).[20] Most  theoretical  studies  of  polymer  detach-
ment focus on equilibrium statistical thermodynamics, simpli-
fying the process into two states (fully adsorbed and fully de-
tached).[14,16,21−23] However, detachment is essentially a kinet-
ic process that involves various reactions before the molecule
is  fully  detached.  Describing  the  evolution  of  the  entire  sys-
tem  thus  requires  a  set  of  kinetic  equations.  To  derive  these
equations, it is necessary to determine the mean detachment
time of individual breakable links.

The  breakable  link  in  polymer  detachment  studies  is  typi-
cally modeled as a spring,[24,25] and its mean detachment time
can  be  projected  as  a  one-dimensional  problem  in  which  a
Brownian  particle  escapes  from  the  spring  potential  well.[26]

The presence of an applied force tends to tilt the potential en-
ergy  landscape,  resulting  in  a  lower  barrier  that  significantly
affects  the  detachment  time  of  the  link.  Such  forces  include
mechanical  forces,  electric  field  forces, etc.[27−30] A  special
type of  force also arises  from an entropic  repulsion between
the wall  and the free-moving end of the chain called the en-
tropic  force.  In  the  most  common  case,  a  hard  flat  substrate
causes  reduction  of  polymer  chain  configurations,  which  ac-
celerates  the  detachment  of  the  adsorbed  polymer
chains.[26,31,32]

The entropic repulsion between the wall and the free-mov-
ing end of the chain is affected by the roughness of substrate
surfaces and exhibits a rich behavior that can impact the de-
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tachment  process.  For  example,  the  adsorption-desorption
transition of a polymer on a curved surface occurs at a lower
transition temperature,[33] and a  higher  degree of  roughness
of  the surface induces stronger polymer adsorption.[34] How-
ever,  little  is  known  about  the  curvature  dependence  of  the
mean detachment time of a breakable link with one end teth-
ered to a polymer chain. Complex interfaces, especially spher-
ical  surfaces,  are  worthy  of  study  since  cells  and  vesicles  are
typically modeled as spheres for investigation.[2,35,36] The cur-
vature dependence of polymer entropy significantly changes
the rupture rate of breakable links and should be incorporat-
ed  into  theoretical  investigations  to  gain  a  deeper  under-
standing  of  the  underlying  mechanisms  governing  polymer
detachment from curved surfaces.

In this work, we present a theoretical analysis of the mean
detachment  time  of  a  specific  link  under  spherical  confine-
ment.  This  quantity  depends  on  various  factors  such  as  the
length of  the chain,  the  radius  of  the sphere,  and the spring
constant.  We  use  the  mean  first  passage  time  (MFPT)  tech-
nique[37,38] to calculate the mean detachment time of a break-
able  link  that  is  tethered to  a  polymer  chain  without  re-con-
necting. This technique estimates the time it takes for a parti-
cle  to  reach  the  boundary  of  a  given  domain.  In  our  model,
the domain is modelled by a potential well that incorporates
the spring potential and the entropy effect. The mean detach-
ment time of the link corresponds to the time it takes for the
diffusing particle to reach the local maximum of the potential
well and can be solved theoretically.

This  study is  organized as  follows.  In  Section TOY MODEL
AND EFFECTIVE POTENTIAL,  we discuss the expressions for
the effective potential energy. This energy includes the spring
potential energy and the entropy effect along the unbinding
coordinate. We present an analytical expression for the effec-
tive  potential  energy  inside  and  outside  the  sphere.  In  Sec-
tion MEAN  DETACHMENT  TIME τ± OF  THE  BREAKABLE
LINK,  we  introduce  the  MFPT  method  to  find  the  mean  de-
tachment  time  of  the  breakable  link  in  this  context.  We  also
show that the difference in detachment time inside and out-
side  the  sphere,  which  is  due  to  a  pre-factor  related  to  the
partition  function  of  the  polymer  in  confinement.  In  Section
INVESTIGATIONS OF ENTROPIC FORCE,  we analyze the dif-
ference  in  the  mean  detachment  time  of  the  link  inside  and
outside  the  spheres  starting  from  the  entropic  forces  due  to
geometric confinement. Finally, we provide a conclusion and
discuss the main results of our study.

TOY MODEL AND EFFECTIVE POTENTIAL

Effective Potential Energy Contributed by the
Entropic Effect
To investigate the detachment of polymer chains under spheri-
cal confinement, we chose to model the system using the Gaus-
sian chain model  and a  rigid sphere with radius R as  shown in
Fig. 1. In the Gaussian chain model, the length of the chain can
be  written  as L = Nb,  which  consists  of N segments,  each  of
length b (Kuhn or monomer length). One end of the chain is an-
chored to a breakable link,  which is simplified by a spring with
spring constant k and initial length l. We define ξ as the spring’s
elongation  and  restrict  it  in  the  radius  direction  of  the  sphere.

The spring potential energy can be expressed as k(ξ − l)2/2 (see
Fig. 1b). The other end of the chain satisfies a certain probability
distribution in space due to the Brownian fluctuations. The link
breaks when the elongation of spring reaches the link-breaking
distance ξ = c.  We do not consider a possible re-connecting as
we are only interested in finding the detachment time.

In  our  system,  the  tethered  chain  segments  freely  explore
the  confined  space,  subject  to  thermal  motion  and  spring
constraint.  The  confinement  reduces  the  configuration  of
polymer chains compared to free space, resulting in addition-
al  potential  energy  due  to  the  entropy  effect.  The  effective
potential:

V = VS + VE (1)

is the combination of a spring potential VS and an entropic con-
tribution VE.  Where VE is  related  to  the  distribution  function  of
the entire Gaussian chain under the geometric confinement:

V±E = −kBTlnZ± (2)

Z± is  the reduced partition function of  the Gaussian chain.  The
reference state is chosen as a same polymer in free space since
VE is  only  related  to  entropy  effect  of  the  Gaussian  chain.  The
plus  and  minus  signs  represent  the  chain  confined  inside  and
outside  the  sphere,  respectively.  The  partition  function  repre-
sents the sum of all conformations of the polymer with one end
at r and the other end at r' that are satisfied with the externally
imposed  boundary  conditions.  It  can  be  obtained  by  integrat-
ing the Green’s function as:[25,39]
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Fig. 1    (a) The schematic diagram of one breakable link tethered a
Gaussian chain attached to surface inside or outside the sphere. The
detached  chain  free  to  fluctuate  with  one  end  at r and  the  other
end  at r';  (b)  The  detachment  of  the  link  can  be  projected  as  the
Brownian  particle  escapes  from  the  spring  potential  well  without
considering entropy effect.
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Z± = 1

V±0
∫ drdr'G± (r, r', N) (3)

V±0where  represents  the  system volume.  The Green’s  function
G±(r,r',N) represents the probability of a Gaussian chain with the
number  of  chain  segments N,  with  one  end  at r and  another
end at r'. If the excluded volume effects are not considered, the
Green’s function G(r,r',N) satisfies the diffusion equation:[40]

∂G(r, r', N)
∂N

= b2

6
∇2

rG(r, r', N) (4)

with the initial condition G(r,r',N) = δ(r' − r) at N=0, and the im-
penetrability condition due to the sphere can be represented by
the boundary conditions:

G±(r, r', N)»»»»»r'=R
= 0 (5)

In  the  absence  of  external  potential  energy,  the  Green’s
function  in  Eq.  (4)  satisfies  a  Gaussian  distribution  with  vari-
ance Nb2/3 as follows:

G(r, r', N) ∝ exp [−3(r − r')2/2Nb2] (6)

Integrating the Green’s function by combining Eqs. (3) and
(4) yields a partition function Z=1, which implies that VE=0 in
Eq.  (1).  In  this  case,  the mean detachment  time of  the link  is
only related to the spring potential energy and can be seen as
the  escape  of  a  single  Brownian  particle  from  the  potential
well V = k(ξ − l)2/2.

However, when a Gaussian chain is subjected to geometric
confinement,  we  need  to  consider  the  effect  of  entropy  on
the  detachment  process.  Specifically,  the  detached  chain
strongly prefers not to touch the sphere surface and gives rise
to  an  entropic  repulsive  force.  To  account  for  this  effect,  we
first  need to derive the expressions for the Green’s functions
of  the  Gaussian  chain  inside  and  outside  the  sphere.  In  the
next  subsection,  we  will  provide  the  expressions  for  the
Green’s functions in each case and compare the effective po-
tential  for  polymer  detachment  inside  and  outside  the
sphere.

Effective Potential under Spherical Confinement
In this Section, we consider how the spherical confinement ex-
erts an entropic repulsion and changes the initial elastic poten-
tial energy. Solving the diffusion equation Eq. (4) under bound-
ary  conditions  Eq.  (5)  can  obtain  the  Green's  function  of  the
polymer  chains  tethered  to  the  inside  and  outside  surfaces  of
the sphere:[41−44]

G+ (r, r', N) = 1

2πR2
√
rr′

∑∞

n=0
∑

β
(2n + 1) Pn (cosγ)

Jn+(1/2) (β r
R
) Jn+(1/2) (βr′R )[J′n+(1/2) (β)]2

exp (−β2Nb2

6R2
) (7)

G− (r, r', N) = 1

4π
√
rr′

∑∞

n=0
(2n + 1) Pn (cosγ)

∫ ∞

0

Cn+(1/2) (ur) Cn+(1/2) (ur′)
J2
n+(1/2) (uR) + Y2

n+(1/2) (uR)exp (−Nb2u2

6
) udu (8)

r r'where γ is the angle between the two vectors  and  from the
origin of the spherical cavity, Pn(cosγ) are the Legendre polyno-
mials of order n, Jν and Yν are the Bessel functions of the first and
second kind of order ν, and β is the positive roots of Jn+(1/2)(β)=0.

Cn+(1/2) is defined by Jn+(1/2) and Yn+(1/2) as：

Cn+(1/2) (z) = Jn+(1/2) (z) Yn+(1/2) (uR) − Yn+(1/2) (z) Jn+(1/2) (uR) (9)

The  polymer  chain  has  a  free  fluctuating  end,  while  the
tethered end with a spring is limited to moving along the ra-
dial direction. The origin of the coordinate is set in the center
of  the  sphere,  and  the  tethered  end  inside  and  outside  the
sphere can be expressed as R − ξ and R + ξ. By averaging over
all possible locations of the free end, we can obtain the parti-
tion functions of the chain inside and outside the sphere[43,44]

(see APPENDIX for detailed process):

Z+ (ξ) =∫ 2π

0
dϕ∫ π

0
dγsin (γ)∫ R

0
r′2dr′G+ (r, r′, N)

= 2R
π (R − ξ) ∑∞

m=1

(−1)m+1

m sin [mπ (R − ξ)
R

]
× exp [−m2π 2R2

g

R2
]

(10)

Z− (ξ) =∫ 2π

0
dϕ∫ π

0
dγsin (γ)∫ ∞

R
r′2dr′G− (r, r', N)

=
ξ + R ⋅ erf (ξ/2Rg)

R + ξ

(11)

R2
g = Nb2

6
where erf(x) is the error function, and  is the radius of

gyration of the Gaussian chain.

V−E = 0

The  expression  of  the  series  in  Eq.  (10)  can  usually  retain
only the first  term when the chain is  very long (Nb2>>R).  For
the case of a relatively large sphere radius (R>>ξ), Eq. (11) de-
generates to obtain the partition function under the flat wall
confinement  by  the  'image'  principle  method.[42] At  large
spring length, the partition function Z− tends to 1 and ,
which  implies  that  an  entropic  repulsion  is  only  observed
near the wall outside the sphere.

Combining Eqs. (1),  (10) with (11), we get the effective po-
tential energy analytical solution as:

V± (ξ) = k
2
(ξ − l)2 − kBTln [Z± (ξ)] (12)

In  biological  systems,  the  initial  length  of  the  spring l is
usually  of  the  same  magnitude  as  the  segment  length b.  In
our model,  we set l=b=2 nm at room temperature.  Typically,
the link breaking distance c is normally 2 to 3 times the initial
length and we assumed c=4 nm. The characteristic link bind-
ing energy usually ranges from 5 kBT to 20 kBT depending on
the type of interaction[20,45,46] and we choose the appropriate
spring factor k(c − l)2/2=5kBT.

Then Figs. 2(a) and 2(b) show the potential heights (differ-
ence  between  potential  minimum  and  right  side  potential
maximum) and the position of the potential minima as a func-
tion of N and R. It can be observed that the variation of poten-
tial energy is more obvious when N and R are small. Here, we
choose  the  variation  of  potential  energy  with ξ correspond-
ing to N=1, 3, 50 in Fig. 2(c). Gaussian chains are typically cho-
sen to calculate long chains, and it is not realistic to see short
chains with N=1 or 3. We choose short chains only for theore-
tical  analysis,  which  differs  from  reality.  We  first  give  the
spring  potential  well  without  considering  the  effect  of  en-
tropy  (black  solid  line).  The  chain  length  was  then  continu-
ously increased by changing the number of segments N.  The
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chain length increasing leads to a stronger entropic repulsion,
which is intuitively shown as tilting the potential energy land-
scape.  The  minimum  of  effective  potential  moves  farther
away from the equilibrium chain segment length as a result of
VE.  It  is  also  found  that  the  link  inside  the  sphere  (dashed
lines)  is  more  likely  to  rupture  for  the  same  chain  length,
sphere  radius,  and spring constant.  We also  compare  the  ef-
fective  potential  energy  in  the  case  of  confining  inside  and
outside the sphere under different sphere radius (see Fig. 2d).
The  minimum  of  effective  potential  inside  the  sphere  de-
creases as the radius increases while the potential energy out-
side  the  sphere  becomes  greater.  They  converge  to  a  stable
value  as  the  radius  large  enough  (approximation  to  flat  wall
confinement).

In  this  subsection,  we  provide  an  analytical  expression  for
the effective potential energy of a single link under spherical
confinement  with  one  end  tethered  to  a  polymer  chain.  Ne-
glecting the  excluded volume effects,  the  entropic  contribu-
tion  to  the  potential  energy  is  related  to  the  partition  func-
tion  of  the  confined  Gaussian  chain.  The  spherical  confine-
ment creates a repulsive force that lowers the energy barrier
for  chain’s  detachment  and  accelerates  the  process.  Differ-
ences in the partition functions of Gaussian chains inside and
outside  the  sphere  lead  to  distinct  potential  energy  land-
scapes and result in varying detachment times for the break-
able  link.  We  will  calculate  and  discuss  these  detachment
times in the next section.

MEAN DETACHMENT TIME τ± OF THE
BREAKABLE LINK

The mean detachment time of the breakable link can be regard-
ed as the time for the particle to escape from the potential well.
In this work, we use the well-known MFPT technique in statisti-
cal mechanics to estimate the time τ± for the link to be stretched
from  its  initial  length l to  length c and  broken.  We  project  the
detachment  system  into  a  Brownian  particle  that  reaches  the
right-hand maximum from near the bottom of the effective po-
tential energy V±(ξ), which is a simple one-dimensional problem.
We assume there is a reflecting boundary condition at ξ=0 and
an absorbing boundary condition at ξ = c (re-connecting of the
link is not considered in this article). The MFPT of the system sat-
isfied:[38,47,48]

L
†
FPτ (ξ) = −1 (13)

L
†
FPwhere  is the backward Fokker-Planck operator:

L
†
FP = A (ξ) d

dξ
+ B (ξ) d2

dξ2
(14)

where the drift term is determined by the external potential V(ξ)
in  the  form  of A = −V'(ξ)/μ (μ being  the  drag  constant).  More-
over,  the  diffusion  coefficient  is  a  strictly  positive  function B =
D = kBT/μ.  In order to calculate the MFPT, we need to solve the
differential equation:

(A (ξ) d
dξ

+ B (ξ) d2

dξ2
) τ = −1 (15)
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Fig. 2    The barrier height ΔE (a) and the position of the potential minimum ξ* (b) as the function of the number of chain segments N and
the sphere radius R. We set R=20 nm (main figure) and N=10 (inset) in (a) and (b). Plot of the dimensionless effective potential V against
dimensionless spring length ξ/l,  with different chain segments (c) and sphere radius (d). In plot (c), the black line represents the spring
potential  well  without entropy effect.  The radius of the sphere is  set R=20 nm. The other lines indicate detached chains with different
chain segments as N=1 (blue), 3 (red), and 50 (green). And in plot (d), the number of detached chain segments is set to N=10, and the
sphere radius R=10 nm nm (black), 20 nm (red), and 100 nm (blue) increase in the direction of arrow.
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Ψ (ξ)
Ψ′ (ξ) = A (ξ)/B (ξ)To  solve  this  equation,  we  define  the  function 

through  to write Eq. (15) in the form:{exp [Ψ (ξ)] τ′ (ξ)}′ = −
1
D

exp [Ψ (ξ)] (16)

with the boundary conditions, the general solution of Eq. (16) is
obtained after two integrations:

τ (ξ) = −
1
D
∫ ξ

0
exp [−Ψ (z)]dz∫ z

0
exp [Ψ (y)]dy

+ ω1 ∫
ξ

0
exp [−Ψ (y)]dy + ω2

(17)

where the constants ω1 and ω2 are to be determined from the
boundary  conditions.  For  the  reflecting  boundary  condition  at
ξ=0, τ(ξ)  satisfies  (dτ/dξ)ξ=0=0.  And for  the absorbing boundary
condition located at ξ=c, τ(ξ) satisfies τ(c)=0, we can obtain:

ω1 = 0, ω2 = 1
D
∫ c

0
exp [−Ψ (z)]dz∫ z

0
exp [Ψ (y)]dy (18)

Ψ (ξ) = −V (ξ)/kBTSubstituting ω1, ω2 and  into Eq. (17), we
get:

τ± (ξ) = 1
D
∫ c

ξ
exp [V± (z)

kBT
]dz {∫ z

0
exp [−V± (y)

kBT
]dy} (19)

DNote  that  is  a  relevant  parameter  that  would  not  cause
any  errors  and  is  chosen  as  a  constant  (1  nm·s−2)  for  conve-
nience in calculation throughout the remainder of this work.

The integral within the brackets in Eq. (19) can typically be
solved by the saddle-point  method.  For  example,  the saddle
point  corresponding  to  the  effective  potential  energy  of  the
Gaussian  chain  outside  the  sphere  is  given  by  the  following
equation:

(ξ∗ − l) = kBT
k

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 + R ⋅ exp (−ξ∗2/4R2
g)/√πRg

Rerf (ξ∗/2Rg) + ξ∗
−

1

R + ξ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (20)

where ξ* is  the saddle point and is difficult  to solve analytically
because of the error function in Eq. (20).

∞

The  saddle  point  in  Eq.  (20)  can  be  approximated  with  a
large spring constant k.  This  is  reasonable  for  a  real  biopoly-
mer system above 5 kBT. Fig. 2(c) shows that the saddle point
converges  to  a  constant  value  in  the  long chain  limit.  Under
the large-k assumption and long chain limit,  we can simplify
our  calculation  by  taking  the  saddle  point ξ*≈1  instead  of
solving Eq. (20) directly. Additionally, since the internal expo-
nential  function  decays  rapidly  away  from  the  saddle  point,
we can replace the upper  limit  of  inside integration with .
Now the inside integral of the variable y in curly brackets can
be expressed as:

∫ z

0
exp [−V− (y)/kBT]dy

≈ Z− (l)∫ ∞

0
exp [−k(y − l)2/2kBT]dy

= Z− (l)√πkBT
2k

⎡⎢⎢⎢⎢⎢⎢⎢⎣1 + erf
⎛⎜⎝l

√
k

2kBT

⎞⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎦
(21)

In our model, the link begins to detach from the surface of
the  sphere  at  the  minimum  potential  energy  position ξ = l.
Therefore,  the  lower  limit  of  the  second  integral  outside  the
brackets related to z in Eq. (19) should be replaced with l. It is
noteworthy  that  the  major  contribution  of  this  integral  is
around ξ = c. Consequently, we can replace Z−(z) in the effec-

tive potential with Z−(c), which allows us to analytically calcu-
late the integral:

∫ c

l
exp [V− (z)/kBT]dy

≈ 1

Z− (c) ∫ c

l
exp [k(z − l)2/2kBT]dy

= 1

Z− (c)
√

πkBT
2k

erfi
⎡⎢⎢⎢⎢⎢⎢⎢⎣(c − l)√ k

2kBT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(22)

Finally, we obtain the detachment time of the link with one
end  tethered  to  a  Gaussian  chain  confined  outside  of  the
sphere as:

τ− ≈
Z− (l)
Z− (c)T (23)

and

T =
πkBT
2Dk

erfi
⎡⎢⎢⎢⎢⎢⎢⎢⎣(c − l)√ k

2kBT

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣1 + erf

⎛⎜⎝l

√
k

2kBT

⎞⎟⎠⎤⎥⎥⎥⎥⎥⎥⎥⎦ (24)

Similarly, the mean detachment time inside the sphere can
be written as:

τ+ ≈
Z+ (l)
Z+ (c)T (25)

where T is the product of Eqs. (21) and (22) after extracting the
partition function and can be regarded as the mean exit time for
the Brownian particle in a harmonic system.[26,38,47] The analytic
approximation of this harmonic system can be written as:

τ0 =
(c − l)2

D

√
πexp (λ)
2λ3/2

, λ =
k(c − l)2

2kBT
(26)

erf (√kl2/2kBT) → 1

where τ0 is  the detachment time of a Brownian particle from a
spring  potential  well  under  the  influence  of  an  entropic  force
approaching zero. In this case, τ0 differs from the result unaffect-
ed by entropic forces by a factor of two. This is due to the fact
that  Brownian  particle  is  much  more  likely  to  reach  the  right
side of the spring potential well than the left one. We can derive
the  relationship  between T and τ0.  Under  the  large-k assump-
tion, kl2/2kBT is much larger than 1, we can use the properties of

the error function to get . And for the imag-

inary error function, the approximate solution can be obtained
by asymptotic expansion:[49]

erfi (x) = −ierf (ix) ≈ −i
⎡⎢⎢⎢⎢⎢⎢⎢⎣1 −

exp (−x2)√
π

( 1
ix

−
1

2i3x3
)⎤⎥⎥⎥⎥⎥⎥⎥⎦ (27)

using the above equation, we can get

T ≈
(c − l)2

D

√
πexp (λ)
2λ3/2

(1 +
1

2λ
) = (1 +

1
2λ

) τ0 (28)

1/ (2λ) → 0Under  the  large-k assumption, ,  it  follows  that
T ≈ τ0.

In Fig. 3 we give a comparison of the breakable link detach-
ment times both inside and outside under spherical confine-
ment  with  different  stiffness  constants k.  We  keep  other  pa-
rameters  such  as  sphere  radius R and  the  number  of  chain
segments N constant and compare the difference in the mean
detachment time between confining inside (dashed line) and
outside  (solid  line)  the  sphere.  Our  results  reveal  that  the
breakable link inside the sphere is more likely to rupture than
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it is confined outside the sphere. We also give in Fig. 3 the nu-
merical  solution  of  the  integral  in  Eq.  (19)  compared  to  the
approximate solution in Eqs. (23) and (25). Our results demon-
strate that the approximate calculation can be well-matched
with  the  numerical  calculation  in  large  spring  constant k ≥
5kBT.

N

τ± also  related to  the length of  tethered polymer  chain.  In
Fig.  4 we give the normalized τ± change with the number of
chain  segments N.  In  order  to  enhance  the  impact  of  graph
changes at different values of b, we increase the c/l ratio and
keep c=4 nm, while set other parameters as l=1 nm, R=10 nm,
and k(c − l)2/2  =  15kBT.  According to  Eq.  (28)  we realize  that
the entropic repulsion effect of the detached chain is reflect-
ed  in  the  ratio  of  the  partition  functions, τ/τ0 ≈ Z(l)/Z(c).  The
ratio of τ/τ0 is 1 when N=0 (i.e.,  without any detached chain),
corresponding to  the case of  only  spring potential  well.  And
τ± decreases  rapidly  and  stabilizes  as  the  number  of
monomers  increases.  This  suggests  that  increasing  chain
length  significantly  accelerates  link  rupture.  We  also  found
that  the mean detachment time inside the sphere decreases
more  rapidly  with  increasing chain  length  and the  stabilized
value is smaller than that outside the sphere. This is because
fewer conformations can be reached inside the sphere, result-
ing  in  a  greater  entropic  force  stretching  the  spring  for  the
same  chain  length.  In  the  next  section,  we  will  analyze  the
reasons for the different detachment times from the entropic
force perspective.

INVESTIGATIONS OF ENTROPIC FORCE

ξ

In comparison to free polymers,  the conformational entropy of
the polymer is reduced when it is constrained by confinement.
The reduction in entropy leads to additional entropic force. This
force  applied  to  the  spring  makes  it  easier  for  the  chain  to  be
detached from the substrate surface (as shown in Fig. 5). The en-
tropic force on the polymer under confinement is  typically cal-
culated by taking a derivative of the free energy difference with
respect to  in the direction of the radius of the sphere:

f = −
∂VE

∂ξ
(29)

 
 

o f 
−

f 
+

ξ

 
Fig. 5    Entropic forces exerted by polymer chains on springs.

 
As  shown  in Fig.  5,  the  spring  extends  in  the  same  direc-

tion  as  the  positive  axis  of  the  coordinate  axes  outside  the
sphere and in the opposite direction inside the sphere. There-
fore, combining Eqs. (2), (10), (11) and (29), we obtain the ex-
pression for the entropic forces outside the sphere:

f− (ξ) = −
∂V−E
∂ξ

= kBT
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 + Rexp (−ξ2/4R2
g)/(Rg

√
π)

ξ + Rerf [ξ/2Rg] −
1

R + ξ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(30)

ξ

When the polymer is tethered inside the sphere, the direc-
tions of the polymer and the spring are opposite to the radial
direction,  resulting  in  a  negative  value  for .  The  entropic
force of the polymer inside the sphere can be expressed as:

f+ (ξ) = −
∂ΔV+E
∂ξ

= kBT
⎧⎪⎪⎪⎨⎪⎪⎪⎩πR

∑∞

m=1
(−1)1+mexp (−R2

gm
2π2/R2) cos [mπ (R − ξ)/R]

∑∞

m=1
(−1)1+mexp (−R2

gm
2π2/R2) sin [mπ (R − ξ)/R]/m

−
1

R − ξ
}

(31)

Eqs.  (30) and (31) provide the analytical  expression for the
surface  entropic  force  averaged  over  all  possible  configura-
tions of the Gaussian chain. The surface force depends on the
tethering position ξ, the radius of the sphere R, and the gyra-
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Fig.  3    Comparison  of  approximate  and  numerical  calculations
where l=b=2  nm, N=3  and R=10  nm.  The  blue  and  red  colors
indicate different breakable distances c=4 nm and c=6 nm. The solid
and dashed lines produce the approximate expressions of Eqs. (23)
and (25), while markers (circles and triangles) are the corresponding
numerical results estimated from Eq. (19).
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Fig. 4    Normalized detachment time τ/τ0 of the flexible chain as a
function  of  the  number  of  chain  segments N.  Different  values  of
b/l=0.2,  0.5,  0.7  and  1.5  (increasing  along  the  arrow)  are  indicated
by  different  colors.  The  solid  lines  represent  the  polymer  chain
confined outside of the sphere, while the dashed lines indicate the
chain confined inside the sphere.
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tion radius Rg of the chain.

f +

The entropic force inside the sphere is negative, while it  is
positive outside the sphere. As shown in Fig. 6, we represent
the absolute value of the entropic forces both inside and out-
side the sphere as a function of the parameters N. Both forces
are applied to the chain by the wall and drive the chain away
from  the  confining  surface,  which  accelerates  the  detach-
ment  of  the  polymer  from  the  surface.  Comparing Figs.  6(a)
with 6(b), we can see that the entropic force inside the sphere
is larger than outside the sphere for the same model parame-
ters. This is the reason for the difference in the mean detach-
ment time of the link. For a sufficiently long chain, the entrop-
ic  force  reaches  a  plateau.  The  entropic  force  inside  the
sphere  is dominated by the first term (m=1) in Eq. (31). We
can  estimate  the  limit  value  of  the  entropic  force  acting  on
the polymer by the wall as:

f + (ξ, N → ∞) = kBT [πcot [π (R − ξ)/R]
R

−
1

R − ξ
] (32)

And the expression of the entropic force outside the sphere
can be expressed as:

f − (ξ, N → ∞) = kBT (1
ξ
−

1
R + ξ

) (33)

It  is  apparent  that  the  entropic  force  is  no  longer  depen-
dent  on  the  chain  length  but  only  relates  to  the  chain’s  one
end  location  distance  from  the  wall ξ and  radius  of  the

sphere.
In Fig. 7, we compare the entropic force when the polymer

is tethered on the flat wall, outside the sphere, and inside the
sphere with increasing chain length. The entropic force of the
polymer  chain  tethered  at  a  distance ξ from  flat  wall  can  be
written as:[44]

f0 (ξ) = kBT
exp [−ξ2/(2Rg)2]√
πRgerf (ξ/2Rg) (34)

N → ∞as 

f0 (ξ, N → ∞) = −kBT/ ξ (35)

f + f −
We find that the entropic forces from largest to smallest are
, f0 and . The largest entropic force makes the breakable

link  inside  the  sphere  with  one  end  tethered  to  a  polymer
chain the fastest to reach the rupture distance ξ = c, which im-
plies the minimum mean detachment time.
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Fig.  7    Comparison of  entropic  force exerted on the chain by flat
wall  and  spherical  surface  as  a  function  of  the  number  of  chain
segments N. The spring initial length and the segment length are l=b=
1  nm  and  the  link-breaking  distance c=4  nm.  The  sphere  radius  is
R=10 nm.
 

CONCLUSIONS AND DISCUSSION

f +

f −

In  this  study,  we studied the  step-by-step detachment  kinetics
of polymer chains in a spherical substrate. The spherical face ge-
ometry constraint and the long polymer chains made the break-
able  links  subject  to  additional  wall-imposed  entropic  forces
that  changed  the  height  of  the  energy  potential  barrier.  The
MFPT method was used to calculate how the entropic repulsion
given  by  spherical  confinement  affects  the  mean  detachment
time of  the breakable  link.  Compared to  the simple  spring po-
tential  energy,  the  entropy  effect  reduces  the  mean  detach-
ment  time  of  the  links  inside  and  outside  the  sphere,  and  the
time is related to the partition function Z±(l)/Z±(c). And we found
that the link inside the sphere is more easily ruptured due to the
different  boundary  conditions  inside  and  outside  the  sphere
that  make  the  Gaussian  chain  configuration  distribution  differ-
ent, leading to stronger repulsion of the chain on the inside wall
of  the  sphere.  Compared  with  the  entropic  force f0 of  the  flat
wall  confinement,  the  entropic  force  inside  the  sphere  > f0

while the entropic force outside the sphere  < f0. As the chain
length  increases,  the  entropic  force  and  detachment  time  will
gradually  approach a  plateau and only  relate  to  the distance ξ
and radius of the sphere R.
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Fig. 6    Entropic force exerted on the chain by the sphere surfaces
with  different  numbers  of  chain  segments N.  We  set  spring  initial
length l=1  nm  and  the  link-breaking  distance c=4  nm.  The  solid
lines  represent  the  polymer  chain  confined  outside  of  the  sphere,
while  the  dashed  lines  indicate  the  chain  confined  inside  the
sphere.  (a)  Different  segment  lengths b/l=0.5  (black),  1  (blue),  and
1.5 (red); (b) Different sphere radius R=10 nm (black), 20 nm (blue),
and 50 nm (red).
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This work investigated the detachment kinetics of polymer
chains on the surface of a sphere by means of a simple ideal
Gaussian  chain  model.  The  excluded  volume  effect  and  the
bending  stiffness  of  the  polymer  chains,  which  were  impor-
tant  in  the  dissociation  problem,  were  not  considered  here
and will be refined in the subsequent work.

APPENDIX: DERIVATION OF Z±

Derivation of Z+

In this section, we calculate the partition function for a polymer
chain inside a sphere with one end anchored to a breakable link
at r = (R − ξ, 0, 0). In our model, we assume the spring’s elonga-
tion  restrict  in  the  radial  direction.  The  other  free  end  of  the
polymer can be at any position r' inside the sphere. The full so-
lution  of  the  Green's  function  in  the  spherical  coordinate  sys-
tem can be written as:[42,44]

G+ (r, r', N) = 1

2πR2
√
rr′

∑∞

n=0
∑

β
(2n + 1) Pn (cosγ)

Jn+(1/2) (β r
R
) Jn+(1/2) (βr′R )(J′n+(1/2) (β))2

exp (−β2Nb2

6R2
) (A1)

Pn(cosγ) are the Legendre polynomials of order n, Jν are the
Bessel functions of the first kind of order ν and β are the vari-
ous zeroes of Jn+(1/2)(β)

Jn+(1/ 2) (β) = 0 (A2)

Integration over the position of the free end r' yields

Z+ = ∫ 2π

0
dϕ∫ π

0
dγsin (γ)∫ R

0
r′2dr′G+ (r, r', N) (A3)

This  integral  can be simplified by the orthogonality  of  the
Legendre polynomials Pn(cosγ):

∫ π

0
Pi (cosγ) Pj (cosγ)dcosγ = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

2
2i + 1

, i = j

0 , i ≠ j
(A4)

This  allows  us  to  keep  only  the  terms  with n=0  in  the  ex-
pression for Eq. (A1). Thus, the Green's function in Eq. (A3) can
be written as

G+ (r, r', N) = 1

2π R2
√
rr′

∑
β
P0 (cosγ)

J1/2 (β r
R
) J1/2 (βr′R )(J′1/2 (β))2

exp (−β2Nb2

6R2
) (A5)

J1/ 2 (β) = 0where β = mπ (m=1, 2,……) is the roots of , and the
sum over β in Eq. (A5) indicates the summation over these roots.

Herein, we can already see that the calculation of the parti-
tion  function  is  independent  of  the  angle  according  to
P0(cosγ)=1. Substituting Eq. (A5) into Eq. (A3), we get

Z+ = 2

R2√r ∑∞

m=1
∫ R

0
(r′)2 1√

r′
J1/2 (βr′R )dr′

×
J1/2 (β r

R
)[J′1/2 (β)]2

exp (−m2π2R2
g

R2
) (A6)

∫ 1
0 xv+1Jv (ax)dx = a−1Jv+1 (a)Calculating  the  integral  in  Eq.  (A6)  by  using

 yields:[49]

I = ∫ R

0
(r′)2 1√

r′
J1/ 2 (βr′R )dr′ = R5/ 2 1

β
J3/ 2 (β) (A7)

Then, we give the definition of the Bessel function

J1/ 2 (x) = √
2
π x sinx

J3/ 2 (x) = √
2
π x ( sinx

x − cosx)
J′1/ 2 (x) = √

2
π x (−1

2
sinx
x + cosx)

(A8)

Substituting r = R − ξ, Eqs. (A7) and (A8) into Eq. (A6) gives

an expression for the partition function of the polymer chain

inside the sphere as:

Z+ = 2R
π (R − ξ) ∑∞

m=1

(−1)m+1

m sin [mπ (R − ξ)
R

]
× exp (−m2π2R2

g

R2
) (A9)

Z−Derivation of 
Now we consider a polymer chain with one end anchored to a

breakable link located at r =  (R + ξ,  0,  0)  outside a  sphere.  The

other end r' is free in space outside the sphere confinement. The

Green's function can be expressed as:[42]

G− (r, r', N) = 1

4π
√
rr′

∑∞

n=0
(2n + 1) Pn (cosγ)

∫ ∞

0

Cn+(1/ 2) (ur) Cn+(1/ 2) (ur′)
J2
n+(1/ 2) (uR) + Y2

n+(1/ 2) (uR)e−Nb2u2/ 6udu
(A10)

with Cn+(1/2)(z)  = Jn+(1/2)(z)Yn+(1/2)(uR) − Yn+(1/2)(z)Jn+(1/2)(uR). Yν are

the Bessel functions of the second kind of order ν. Similar to the

previous  procedure  in  the  calculation  of Z+,  the  Green's  func-

tion in Eq. (A10) can still retain only the n=0 terms as:

G− (r, r', N) = 1

4π
√
rr′

∫ ∞

0

C1/2 (ur) C1/2 (ur′)
J2

1/2
(uR) + Y2

1/2
(uR)

× exp (−Nb2u2

6
) udu (A11)

Y1/ 2 (z) = J−1/ 2 (z) = √
2/ (πz)coszwhere .  Substituting  Eq.  (A8)

into Eq. (A11), we can get

G− (r, r', N) = 1

2π2rr′
∫ ∞

0
sin [u (r − R)]

sin [u (r′ − R)] exp (−Nb2u2

6
)du (A12)

The  Green's  function  of  the  polymer  chain  outside  the

sphere is calculated for the integral as:

G−(r, r', N) = 1

8π rr′
√
πNb2/6

{exp [−3(r′ − r)2

2Nb2
]

−exp [−3(r′ + r − 2R)2

2Nb2
]} (A13)

then  the  partition  function  of  the  polymer  chain  outside  the

sphere can be obtained as:
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Z− = ∫ 2π

0
dϕ∫ π

0
dγsin (γ)∫ ∞

R
r′2dr′G− (r, r', N)

=
ξ + R ⋅ erf (ξ/2Rg)

R + ξ

(A14)

In  conclusion,  we  derived  the  partition  function Z± of  the
polymer inside and outside the sphere from the full  solution
of  the  Green's  function G±.  The  calculation  of Z± can  also  be
found in some other literature consistent with our calculation
process.[44,50,51]
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